
Anales PANEL' 81/12 JAllO
Sociedad Argentina de informática
e Investigación Operativa. Buenos Aires, 1981.

REGISTER AllOCATION VIA COlORING

ASIGNACION DE REGISTROS POR COLORACION

Gregory J. Chaitin
Ashok 1<. Chandra
Martin E. H.opkins

IBM Thomas J. Watson Research Center
P. O. Box 218
Yorktown Heights, New York 10598, U.S.A.

Man: A. Auslander
John Cocke
Peter W. Markstein

Resúmen: La asignación de registros puede considerarse como un problema de coloración de gráficos. Cada nodo del
gráfico representa una. cantidad computada que reside en un registro de la máquina, y dos nodos están conectados por un
vertice si las cantidades se interfieren entre si, es decir, si están simultaneamente vivas en algún punto del programa
obj6,J. Este enfoque, aunque mencionado en la literatura, jamás fué puesto en practica hasta ahora. Los resultados
preliminares de una implementación experimental en un compilador optimizador de PL/1, sugieren que de este modo se
pueden lograr asignaciones globales de registros que se asemejan a las obtenidas a mano por programadores trabajando
directamente en el lenguaje de la máquina.

/

l. OVERVIEW OF REGISTER ALLOCATION

In this paper we describe the Register Allocation Phase of an experimental PL/I compiler
for the IBM System/370. (For an overview of the entire compiler see J. Cocke and P.
Markstein [1]. For backgroUnd inforruation on optimization, see [1] and [21:) It is the
responsibility of this phase to map the unlimited nurnber of symbolic registers assumed in the
intermedia te language into the seventeen real machine registers, namely the sixteen ·general
purpose registers (R'O-R 15), and the condition-code (CC).

The essence of our approach is -that it is uniform and systematíc. Compiler back-ends
must deal with the idiosyncrasies of the machine ínstructions; for example, register pairs, the
Jact that register RO is an invalid base register, and that the contents of sorne mach.ine
registers are destroy.ed as á side-effect of particular instructions. In our approach all these
idiosyncrasies are entered in a uniform manner in our data structure, the interference graph.
Afterwards this. data structure is manipulated in a very systematic way.

Also, our approach'has a rather different personality than traditional ones because we do
global register allocation across entire procedures. Furthermore, except for the register which
always contains the address of the DSA ("dynamic storage area", i.e. current stack frame) and
is the anchor for all addressability, all other registers are considered to be part of a uniform

· pool and al! computations compete on an equal basis for these registers, Most compilers
reserve subsets of the registers for specific purposes; we do the exact opposite.

In our compiler a deliberate effort is made to make things as hard as possible for register
allocation, i.e. to keep as many computations as possible in registers rather than in storage.
For example, automatic scalars are usually kept in registers rather than in the DSA, and
subroutine linkage also attempts to pass as much information as possible through registers. It
is the responsibility of code generation and optimization to take advantage of the unlimíted
number of registers allowed in the intermediate language in order to minimize the number of

loads and stores in the program, since these are much more expensive than register to register
instructions. Then hopefully register allocation will map all these registers into the 17 that are
actually available in the hardware. If not, it is register allocation's responsibility to put back
into the object program the mínimum amount of spill code, i.e. of stores· and reloads of
registers, that is needed.

As 'long as no spill code need be introduced, we feel that our approach to register
allocation does a better job than can be done by hand-coders. For example, if there is a slight
change in a program, when it is recompiled the Register Allocation Phase may produce a
completely different allocation to accommodate the change. A hand-coder would be irrespon
sible to proceed in such a fashion. We also feel th:;tt our compiler succeeds in keeping things
in registers rather than in storage better than other compilers, imd that this is one of the
salient features of the personality of the object code we produce. Moreover the mathematical
elegance of the graph· coloring approach described below, its systematic and uniform way of
dealing with hardware idiosyncrasies, and the fact that its algorithms are computationally
highly efficient, are convincing arguments in its favor.

2. REGISTER ALLOCATION AS A GRAPH COLORING PROBLEM

Our approach to register allocation is via graph coloring. This has been suggested by J.
Cocke, A.P. Ershov [3], J.T. Schwartz [4], and others, but has never been worked-out in detail
nor implemented before. Recall that a coloring of a graph is an assignment of a color to each
of its nodes in such a manner that if twci nodes are adjacent, i.e. connected by an edge of the
graph, then they have different colors. A coloring of a graph is said to be an n-coloring if it
does not use more than n different colors. And the chromatic number of a graph is defined to
be the minimal number of colors in any of its colorings, i.e. the least n for which there is an
n-coloring of it.

lt is well-known (see [5]) that given a graph G and a natural number n > 2, the problem
of determining whether G is n-colorable, i.e. wbether or not there is an n-coloring of G, is
NP-complete. This suggests that in soine cases an altogether impractical amount of computa
tion is needed to decide this, i.e. that in sorne cases .the amount of computation must be an
expone:q.tial function of the size of G.

In fact experimental evidence indicates that the NP-completeness of graph coloring is not
a significant obstacle to a register allocation scheme based on graph coloring. However it
should be pointed out that given an arbitrary graph it is possible to construct a program whose
register allocation is formulated in terms of coloring this graph (see Appendix 2). Thus sorne
programs must give rise to serious coloring problems.

Our .approach to register allocation is to build a register interference graph for each
procedure in the source program, and to ol:Í'i:ain 17-colorirrgs of these interference graphs.
Roughly -speaking, two computations which reside in machine registers are said to interfere
with each otl;ler if th€y ar:,e live simultaneously at any point in the 'program. .

For each proced~e P in the source program an int~rference graph is constructed whose
nodes stand for the 17 machine registers and fot all computations in the procedure P which
reside in machine registers, and whose edges stand for register interferences. If the chromatic
number of thís graph is 17, then a register allocation has beel'l ach·ieved, and the register
assigned to a computation is that 'one of the 17 mac:hine registers which has the same color
that it does. Thus computations which interfere cannot be assigned to the same machine
register. pn 1he other hand, if the chromatic number is greater than 17, then spill code must

be introduced to store and reload registers in arder to obtain a program whose chromatic
number is 17.

3. THE CONCEPT OF INTERFERENCE

If a program has two loops of the forro DO J = 1 TO 100, J could be kept in a different
register in each of the loops. In arder to make this possible, each symbolic register is split into
the connected components of its def-us~ • (-fiefinition-use) chains, and it is these components,
called names, which are the nades. of our interference graph. This is especially important
because we always do global register allocation for entire procedures. Much additional
freedom in coloring is obtained by uncoupling distant regions of the procedure by using names
instead of symbolic registers as the nades of the interference graph. However, as we explain
below, sorne of these names are later coalesced, at which point the mapping from symbolic
registers to names becomes many-many rather than one-many.

Our notion of liveness is not quite the sáme as that used in optimization. We consider a
name X to be live at a point L in a program P if there is a control flow path from the entry
point of P to a definition of X and then through L to a use of X at point U, which has the
property that there is no redefinition of X on the path between L and the use of X :at U. l. e. a
computation is live if it has been computed and will be uséd befare being recomputed.

Above it was stated that two names interfere if they are ever live simultaneously. Thus jf
at a point in the program there are k live names N¡, it is necessary to add k(k - 1)/2 edges to
the interference graph. However, we do not actually do this. If k names N¡ are live at the
definition point of another name N', we add the k interferences (N' ,N¡) to the graph. In other
words, the notion of interference that we actually use is that two names interfere if one of
them is live at a definition point of the other. This interference concept is better than the .
previous one for two reasons: it is less work to build the interference graph (k edges added
versus k(k+ 1)/2), and there are programs for which the resulting interference graph has a
smaller chromatic number. Here is an example of such a program:

p- 15.

P: PROe(MODE);

DeL
MODE BIT(l),
(Al ,A2,A3,A4,A5,A6,A 7 ,A8,A9,Al0,

Bl ,B2,B3,B4,B5,B6,B7 ,B8,B9,B 10,
SUM) FIXED BIN(15) AUTO,

(U(lO),V(lO)) FIXED BIN(15) STATIC EXT;

IF MODE
THEN DO;

Al=U(l); A2=U(2); A3=U(3); A4=U(4); A5=U(5);
A6=U(6); A7=U(7); A8=U(8); A9=U(9); AlO=U(lO);

END;
ELSE DO;

Bl=V(l); B2=V(2); B3=V(3); B4=V(4); B5=V(5);
B6=V(6); B7=V(7); B8=V(8); B9=V(9); BlO=V(lO);

END;

LABEL:;

IF MODE
THEN SUM = Al+A2+A3+A4+A5+A6+A7+A8+A9+Al0;
ELSE SUM = Bl +B2+B3+B4+B5+B6+B7 +B8+B9+B10;

RETURN (SUM);

ENDP;

At the point in the program P marked LABEL the ten A¡ and the ten B i are simultane
ously live, and so is MODE. Thus with the first method of building the interference graph
there is a 21-clique and the chromatic number of the graph is 21. (Recall that an n-dique is
an n-node graph with all possible n(n - 1)/2 edges.) With the second method, however, none
of the ten A variables interferes with any of the ten B variables, and the chromatic number of
the interference graph is only 11. (A technical point: we have ignored the fact that all our
interference graphs contain the 17 -clique of machine registers as a subgraph. Thus the
chromatic number is actually 17 instead of 11.)

4. MANIPULATING THE INTERFERENCE§

There are three stages in processing the interference graph of a procedure. The first stage
is building the graph in the manner described above. This is done by the routine e_ ITF.
The second stage is coalescing nodes in this graph in order to force them to get the same color
and be assigned to the same machine re gis ter. This is done by the routine e_ LR. The third
and final stage is attempting to construct a 17 -coloring of the resulting graph. This is done by
a fast routine called e_ CLR, or by a slower routinc C _ NP which uses backtracking and is
guaranteed to find a 17 -coloring if there is one. Of course, backtracking is dangerous; in
sorne unusual circumstances e_NP uses exponential amounts of time.

We now make a few general remarks about the preprocessing of the interference graph
which is done for the purpose of assuring that separate nodes in the graph must get the same
color. This is done by coalescing nodes, i.e. taking two nodes which do not ínterfere and
combining them in a single node which interferes with any node which either of them inter-

p - 1li

fered with before. Note that coalescing nodes in the graph before coloring it is also a way of
doing sorne pre-coloring, for any node which is coalesced·with one of the 17 machine registers
has in fact been assigned to that register. Of course, such pre-colorings are a strong constraint
on the final coloring, ~nd should. be avoided if possible, preferably replaced by coalesces not
involving real machine registers. It should be pointed out that preprocessing the graph in this
manner gíves much better results than warping the coloring algorithms to try to give certain
Ílodes"the same color.

Here is an example of a typical situation in which one might wish to coalesce node~. If
there is a LR T,S (load register T from S) in the object program, it is desirable to give the
names S and T the same color so that it isn't. actually necessary to copy the contents of
register S into register T and thus the Final Assembly Phase nee<f!l'temit any code for this
intermediate language instruction. (This optimization is tradi~ionally -teferred to as subsump
tion.) e LR achieves this by checking the source S and target]'~feach LR instruction in
the objectProgram to see whether or not they interfere. If .they·do.n't/ rhen e LR alters the
graph by combining or coalescing the nodes for S and T. Thu~ anY.~~.qJSring ofthe graph will
necessarily give them the same color. · ·

However, in order to make this workwell, the defimtü;ni:(;';IUnterference presented above
m)Jst be altered yet again! The refinémen..til> thaf:the target·af ~u~LR doesn't necessarily ha ve
to be allocated to a different regist.e;r tq~ri.)~s s~l'l"rc~¡ ;:!fhus a LR T,S at a point at which S
and the k names N¡ are live only yi(3fa§~,t~~~:·.i.ht~riférences of the form (T,N¡), but not the
interference (T,S). (See Appendix 'l'f9r'á.cónsistent philosophy of the "ultimate" notion of
interference and approximations to it.)

Subsumption is a very useful optimization, because intermediate language typically
contains many LR 's. Sorne of these areproduced for assignments of one scalar to another.
But even more are generated for subroutine linkages and are introduced by value numbering
and by reduction in strength. Besídes eliminating LR 's by coalescing sources and targets,
e_ LR also attempts to coalesce computations with the condition code, and to coalesce the
first operand and the result of instructions like subtract which are actually two-address (to
avoid the need for the Final Assembly Phase to emit code to copy the operand). e LR also
attempts to coalesce the operands of certain instructions with real registers in order to assign
them to register pairs.

How is the interference graph actually colored? This is done by using the following idea,
which is surprisingly powerful. If one wishes to obtain a 17-coloring of a "graph G, and if a
node N has less than 17 neighbors, then no matter how they are colored, there will ha ve to be
a color left over for N. Thus node N can be thrown out of the graph G. The problem of
obtaining a 17 -coloring of G has therefore been recursively reduced to that of obtaining a
17-coloring of a graph G1 with one node (and usually severa! edges) less than G. Proceeding
in this manner, it is often the case that the entire graph is thrown away, i.e. the problem of
17 -coloring the original graph is reduced to that of 17 -coloring the empty graph. In fact,
e_ eLR gives up if the original graph cannot be reduced to the empty graph, and so spill
code has to be introduced.

On. the other hand, C _NP won't give up un ti! it pro ves that the graph is not 17-
co1orable; it uses an urgency criterion to select nodes for which to guess colors, and back
tracks if guesses fail. The urgency of a node is defined to be (the current number of unco
ioi."ed neighbors that it has) divided by (the number of possible colors that are currently left
for it). e_ eLR runs in time linear in the size of the graph, while e_ NP in the worst case is
exponential, although this doesn't seem to happen often. The usual situation is that e_ NP
. quickly confirms that graphs for which e_ eLR gave up indeed ha ve no 17 -coloring. In fact,
up to qow in our experiments running actual PL/I source programs through the experimental

p - 17

compiler, in the handful of cases in which e_ NP found a 17 -coloring and e_ eLR didn't,
e _NP has achieved this by guessing without having to backtrack. In view of this situation,
we ha ve disabled the dangerous backtracking feature of e_ NP. Furthermore, e _NP is only
invoked when C eLR fails and the user of the compiler has requested a very high level of
optimization.

5. REPRESENTATION OF THE INTERFERENCE GRAPH

One of the most important problems in doing register allocation vía graph coloring is to
find a representation for the interference graph, i.e. a data structure, for which the three
different kinds of operations which are performed on it - namely building the graph, coalesc
ing nodes, and coloring it - can be done with a reasonable investment of CPU time and
storage. In order to do these three different kinds of manipulations efficiently, it is necessary
to be able to access the interference graph both at random and sequentially. In other words, it
is necessary to be able to quickly determine whether or not two given names interfere, and to
also be able to quickly run through the list of all names that interfere with a given name.

While building the graph one accesses it at random in order to determine whether an edge
is already in the graph or must be added to it. While coloring the graph one accesses it
sequentially, in order, for example, to count the number of neighbors that a node has (so that
if this number is less than 17 the node can be deleted). And while coalescing nodes one
accesses the graph both in a random and in a sequential fashion. For each LR T,S in the
object code one must first check whether or not T and S interfere, which is a random access.
If T and S don't interfere, one must then make all interferences of the form (S ,X) into ones of
the form (T ,X). To do this requires sequential access to all names that interfere with S, and
random access to see which interferences (T ,X) are new and necessitate adding an edge to the
graph.

Our solution to the problem of satisfying both of these requirements - fast random and
sequential access - is to simultaneously represent the interference graph in two different data
structures, one of which is efficient for random access, and the other for sequential access.

For random access operations we use an area ITFS in which the interference graph is
represented in the form of a bit matrix. We take advantage of the fact that the adjacency
matrix of the interference graph is symmetrical to halve the storage needed. The precise
addressing rule is ás follows. eonsider two nodes numbered i and j, where without loss of
generality we assume that i is less than or equal to j. Then these are adjacent nodes in the
interference graph if the i + f /2 th bit of the area ITFS is a 1, and if this bit is a O they are
not adjacent. (Here the result of the division is truncated to an integer.)

Since the adjacency matrix is usually quite sparse2 and the number of bytes in the ITFS
are a grows roughly as a' quadratic function f(n) = n /16 of the number n of nodes in the
interference graph, for large programs it would be better if hashing were used instead of direct
addressing into a bit matrix (somewhat more CPU time would be traded for much less main
memory). Since the coefficient 1/16 of n2 is small, if the program is not too large our bit
matrix approach is ideal since it uses a small amount of storage and provides immediate access
to the desired information.

For sequential access operations we keep in an area LSTS lists of all the nodes which are
adjacent to a given one, in the form of linked 32-byte segments. Each segment begins with a
4-byte forward pointer which is either O or is the offset in L,JTS of the first byte after the
next segment of the list. This forward pointer is followed in the segment by fourteen 2-byte
fields for the adjacent nodes. For any given node J, the Jth element · of the vector NXT is

p - 18

either O, or gives the offset in LSTS of the first empty adjacent-node field in the latest
segment of the list of nodes which are adjacent to J, or, if the latest segment is full, it gives
the offset of the first byte after the latest segment. AH segments in a list are full (give all 14
adjacent nodes), except possibly the latest one.

6. DELETING INTERFERENCES AND PROPAGATING COALESCES

Considera LR T,S at a point in the object program where besides S the :names L 1,L2 , ...

are also live. Furthermore, suppose S was subsm;ned with L¡. We carefully avoided making T
and S interfere, but it turns out that we erroneously made T and L¡ interfere. This may have
blocked our subsuming T and L¡, which in turn may have blocked other subsumptions. Our
solution to this problem is as follows: After C _ LR does all possible desirable coalesces, the
entire interference graph is rebuilt from scratch, and typically there wiH be fewer interferences
than before. We then run C_LR again to see if any of the coalesces which were impossible
before have now become possible. This entire process is repeated either a fixed number of
times (usually two times will do), or until no further coalesces are obtained. It turns out that
in practice this is as fast and uses much less storage than the expensive data structure
(described below) which directly supports deleting interferences and propagating coalesces.

Here is a more arcane example of a situatíon which requires interferences to be removed:
If the source and target of a LR instruction are then the LR no longer makes its
source and target interfere with the condition code, :nor does it make its interfere with
all names at that

As it is of some theoretical interest, we now describe the alternate representation of the
interference graph mentioned above. The graph has a count associated with each edge. This
is called the interference count, and it is the number of program points at which the two
computations interfere. As interferences are counts are decremented, and if
they reach zero then the two no interfere with each other.

Let us be more precise. In the framework necessary to directly propagate coalesces, the
interference graph is best thought of as consisting of three sparse symmetric matrices. The
first one gives the interference count of any two given names, The second one gives a pointer
to the list of interferences that must be deleted if these two names are coalesced, and the third
sparse matrix ís boolean and indicates whether it is desired to coale:sce the pair of names if
their interference count hits zero. In practice these three :sparse matrices can be combined
into a single one. Hash tables are needed to provide random access to elements of the matrix,
as weH as pointers in both directions to chain rows and columns together for sequential access
and to permit fast deletion,

The problem with this scheme for directly deleting interferences and propagating coalesc
es is the large amount of memory needed to represent the interference graph.

7, REPRESENTATION OF THE PROGRAM DU:RING COLORING

Here are some details about the way we represent the program in terms of names. In
order to avoid rewriting the intermediate language text, it is actually left in terms of symbolic
registers. But it is supplemented by a vector NM _ MAP giving the name of the resuH
produced by each intermediate language instruction, and also by a "ragged" array giving for
each basic block in the intermediate language text a list of ordered pairs (symbolic register live
at entry to the basic block, corresponding name). And the name of a computation is repre
sented as the index into the intermediate language text of an arbitrarily chosen canonical

p - 19

definition point for it. H is then possible to interpret one's way down a basic block maintain
ing at each moment a map from the symbolic registers into the corresponding names. C _ ITF
does keeping track of which names are live at . each point, in order to build the interfer
ence graph. We also take advantage of this scheme to avoid rewriting the intermediate
language text to reflect coalesces - only the ragged array and the NM MAP vector are
changed.

8. HANDLING OF MACH!NE IDIOSYNCRASlES

It was mentioned above that one of the of the coloring approach to
register aHocation is that special case considerations can be taken care of by additionai
interferences in the graph. For example, the fact that the baJe in a load instruction
cannot be assigned to the is handled by making alJ names that are used as base

interfere with RO. The fact that a call to a PL/I subprogram or a

names live across the caH interfere •;vith a!l whose contents are
are live across the caH and k registers are

Thus if j
a total of jk interfer-

ences are added to the to reflect this facL

subtract a destructive tw.o~address in the intermediate
subtract is three-address and non--desl:ructive. This is

Final
instruction.

In order to avoid
the interference

interfe-ences has Jo do vvith intennediate

in the

are
N2
N3

i:nstruc"~

The intermediate language ignores the fact that there
is The wa.y we around this is exemplified contrasting the
compare intennediate instruction with the actual compare instruction. The interme-
diate language compare is three-address: two are and bits 2 and 3 of the
result register express the result of the compare. However compare
CC, not those of an Code emission in the Final Phase emits
machine code for the compare intermediate Ianguage instruction ín the following manner. If
the result of the compare intennediate language instruction is to the ce, then it

generates a compare. If the resuH of the compare íntermediate language instruction is
assigned to one of the sixteen general-purpose registers, then code emission generates a
compare foHowed by a BALR which wpies the contents of the CC into the indicated general
purpose register.

very special issue is how to deal with the fact that sorne instructíom: set the ce to
reflect the sign of their result. For instance, subtract does this. In Final
no code is emitted for a compare with zero of the result of a subtraction if it corrH:OS
the same basic block as the subtract and none of the intervening instructions
CC.)

9. TECHNiQUES lFOR iNSERTING SPILL CO:OE

p - 20

Phase
later in

the

Our techniques for inserting spill code are quite heuristic and ad hoc. The following
notion is the basis for our heuristic. At any point in the program, the pressure on the registers
is defined to be equal to the number of live names (it might be interesting to change this to
the number of live colors) plus the number of machine registers which are unavailable at that
point because their contents are destroyed as a side-effect of the current instruction. Under

· the level two optimization compiler option, we insert spiH code to immediately lower the
maximum pressure on the registers in the program to 14. Under the level three optimization
compiler option, successive trys are made. Spill code is inserted to bring the maximum
pressure down to 20, then down to 19, etc., until a colorable program is obtained.

After inserting spill code it is necessary to recompute the def-use chains and the right
number of names; therc are generally more names than before. We also rerun dead code
elimination, which has the side-effect of setting the operand-last-use flag bits in the intermedi
ate language text- these flags are needed by C_ITF to keep track of which names are live at
each point in the program. Note that since intermediate language text containing spill code is
reanalyzed by optimization routines, á.nd these routines only understand intermediate language
written in terms of symbolic registers, the intermediate language text containing spill code
must be correct in terms of symbolic registers as well as names.

How is spill code inserted to lower the register pressure? We attempt to respect the loop
structure of the program and to put spill code in regions of the program which are not
executed frequently. This is done in the following manner. First the decomposition of the
program into flow-graphs is used bottom-up to compute the maximum register pressure in each
basic block and each interval of all orders. As we do this we also obtain a bit vector of
mentioned ,names for each basic block and interval. A pass-through is defined to be a compu
tation which is live at entry to an interval but which is not mentioned (i.e. neither used nor
redefined) within it. Clearly pass-throughs of high-order intervals are ideal computations to
spiil, i.e. to keep in storage rather than in a register throughout the interval for which they are
a pass-through. We use the decomposition of the program into flow-graphs top-down in order
to fix all those intervals in which the maximum pressure is too high by spilling pass-throughs.

' We have explained how spill decisions are made for pass-throughs, but we have not
explained how the spill code is actually inserted. This is done by using two rules. First of all, .
if a name is spilled anywhere, then we insert a store instruction at each of its definition points.
And pass-throughs are reloaded according to the following rule: load at entry to each basic
block B every name live at entry to B that is not spilled within B, but that is spilled in sorne
basic block which is an immediate predecessor of B. These rules for inserting spiU code are
easy to carry out, but the other side of the coin is that they sometimes insert unnecessary
code. However this unnecessary spill code is eliminated by a pass of dead c·ode elimination
which immediately follows.

Further remarks: Another idea used here is that sorne computations have the property
that they can be redone in a single instruction whose operands are always available. We call
such computations never-killed. An example of a never-killed computation is a load address
off of the. register which gives addressability to the DSA. Such computations are recalculated
instead of being spilled and reloaded. Furthermore, if spilling pass-through computations
doesn't lower the register pressure enough, as a last resort we traverse each basic block
inserting spill code whenever the pressure gets too high.

Another approach to using recomputation as an alternative to spilling and reloading, is
what we call the rematerialization of uncoalesced LR instructions. Here the idea is to replace
a LR which can't be coalesced away by a recomputation that directly leaves the result of the
computation in the desired register. (Of course, this should only be done if repeating the
computation at this point still gives the same result.) Rematerialization usually decreases the

. p - 21

pressure on the registers. Furthermore, assuming that all intermediate language instructions
seen at this stage of the compilation are single-cost, replacing an uncoalesced LR by a
recomputation cannot increase object program path lengths, and it sometimes actually shortens
them. Thus there is a sense in which rematerialization is an optimization as opposed to a spill
technique.

Rematerialization is most helpful when there are LR's into real registers. Typically this
occurs when parameters are passed in standard registers. The standard parameter registers are
destroyeo over calls so the computation to be passed cannot be kept in the standard register
over the can. The adverse consequence of this is most severe in loops where many loop
constant parameters may be kept in registers and are loaded into standard parameter registers
befare each procedure invocation. Rematerialization tends to reduce the requirement for
registers to hold loop constant parameters.

An entirely different approach to spilling might be based on the following observation. It
is possible to ha ve e_ eLR make the spill decisions as it colors the interference graph. Each
time e_ CLR is blocked because it cannot delete any more nodes (aH of them have more than
16 neighbors), it simply deletes a node by deciding to always keep that computation in storage
rather than in a register. By increasing the granularity in the names, one could perhaps
develop this into a more global and systematic approach to spiHing than the one sketched
abo ve.

APPENDIX l. THE "ULHMATE" NOTION OF INTERFERENCE

Tbe intuitive definition of the concept of interference is that two symbolic registers (i.e.
results of computations) interfere if they cannot reside in the same machine register. Similar
ly, a symbolic register and a machine register interfere if the symbolic register cannot be
assigned to that real register. Thus two registers interfere if there exists a point in the
program, and a specific possible execution of the program for which:

l. Both registers are defined. (I.e. they havc been assigned by previous computations
in the current execution.)

2. Both registers will be used. (Note that we are consideríng a specific execution.
Thus we mean use, not potential use.)

3. The values of the registers are dífferent.

It is clear that if these conditions are met, then assigning both symbolíc registers to the same
real register would be incorrect for that execution. It should also be dear that if any, of the
three cortditions is not met, then such an assignment is correct at that point in the program,
for that execution.

Of course, the criteria stated above are in general undecidable properties of the program.
Thus a compiler must use more restrictive conditions of interference, potentially increasing the
number of registers or amount of spill code required.

One particularly simple and sufficient criterion is that two symbolic registers interfere if
they are ever simultaneously live (in the data flow sense). eonsideration or experiment will
show that this criterion is both expensive to compute and overly conservative. The difficulty
is that application of this standard involves adding interferences for all pairs of livc values at
every point in the program. One could attempt to reduce this cost by observing how the
liveness set changes during a linear reading of the program, so that only potentially new

p - 2?

interferences are added. Only growth of the liveness set need be taken into account, that is to
say, the fact that (a) symbolic registers become alive on assignment, and (b) the set grows by
union at a control flow join. The cost of computing the simultaneously alive criterion could be
reduced by applying these observations.

However, one can safely take into account (a) all by itself, and ignore (b), the effect of
controf flow joins. This approach, which may be called point of definition interference, is not
only inexpensive to compute, but ornits certaín apparent interferences for which both symbolic
registers can never be defined simultaneously in any particular execution of the program.
Thus we approximate interference by reading the program, using precomputed data flow
information so that the set of live values is known at every computation. At each computa
tion, the newly defined symbolic register is made 'to interfere with all currently live symbolic
registers which cannot be seen to have the same value as the newly defined register.

APPENDIX 2. PROOF THAT ALL GRAPHS CAN ARISE IN REGISTER ALLOCATION

Consider the following program. It has declarations of the variables NODE¡, and there
are just as many of these variables as there are nodes in the desired graph .. For each edge
(NODE¡,NODE) in the desired graph, the corresponding variables are summed in order to
make them interfere.

P: PROC(EDGE,MODE) RETURNS(FIXED BIN);
DCL (MODE,EDGE,X) FIXED BIN;
J;:>CL LABEL(number-of-edges) LABEL;

DCL NODEi FIXED BIN STATIC EXT;

GO TO LABEL(EDGE);

/*************************************/
/* THE CALL PREVENTS OPTIMIZATION */
/* FROM MOVING THE LOADS OF NODEi.,j. * /
/* THE ASSIGNMENT STATEMENT */

. /* MAKES NODEi AND NODEj INTERFERE. * /
/* JOINi,j CODE FRAGMENTS MAKE * /
/* N AMES COME OUT CORRECTL Y. * /
/*************************************/

LABEL(edge-number):
CALL EXTERNAL _ ROUTINEedge-number;
X = NODEi + NODEj;
IF MODE THEN GO TO JOINi;

ELSE GO TO JOINj;

JOINi:
RETURN (X*NODEi);

ENDP;

ACKNOWLEDGMENTS

The authors wish to state that the experimental compiler described herein could not have been
completed without the efforts of the remaining members of their team: Richard Goldberg,

p - 23

Peter H. Oden, Philip J. Owens, and Henry S. Warren k Although they were not directly
involved with the compiler's register allocation scheme, this enterprise \Vas very much a team
effort to which aH involved made essential contributions. We also wish to thank Erich J.
Neuhold for reading an earlier version of this paper and suggesting improvements in the
exposition.

REFERENCES

l. Cocke, J. and Markstein, P. Measurement of program improvement algorithms. IF!P 80
Proceedings, to appear.

2. AHen, F.E. and Cocke, J. A program data flow ana!ysis procedure. Communications of the
ACM, volume 19, 1976, pp. 137-147.

3. Yershov, A.P. The Alpha Automatic Programming System. Academic Press, London, 1971.

4. Schwartz, J.T. On Programming: An Interim Report on the SETL Project. Courant Institute
of Math. Sciences, New York University, 1973.

5. Aho, A.V., Hopcroft, J.E., and Ullman, J.D. The Design and Analysis of Computer Algor
ithms. Addison Wesley, Reading, Mass., 1974.

p - 24

